
Learning and Programming Challenges of Rust:
A Mixed-Methods Study∗

Shuofei Zhu
Pennsylvania State University

USA

Ziyi Zhang†
University of Wisconsin-Madison

USA

Boqin Qin
China Telecom Cloud Computing

China

Aiping Xiong
Pennsylvania State University

USA

Linhai Song
Pennsylvania State University

USA

ABSTRACT
Rust is a young systems programming language designed to provide
both the safety guarantees of high-level languages and the execu-
tion performance of low-level languages. To achieve this design
goal, Rust provides a suite of safety rules and checks against those
rules at the compile time to eliminate many memory-safety and
thread-safety issues. Due to its safety and performance, Rust’s pop-
ularity has increased significantly in recent years, and it has already
been adopted to build many safety-critical software systems.

It is critical to understand the learning and programming chal-
lenges imposed by Rust’s safety rules. For this purpose, we first
conducted an empirical study through close, manual inspection of
100 Rust-related Stack Overflow questions. We sought to under-
stand (1) what safety rules are challenging to learn and program
with, (2) under which contexts a safety rule becomes more difficult
to apply, and (3) whether the Rust compiler is sufficiently helpful
in debugging safety-rule violations. We then performed an online
survey with 101 Rust programmers to validate the findings of the
empirical study. We invited participants to evaluate program vari-
ants that differ from each other, either in terms of violated safety
rules or the code constructs involved in the violation, and compared
the participants’ performance on the variants. Our mixed-methods
investigation revealed a range of consistent findings that can benefit
Rust learners, practitioners, and language designers.

CCS CONCEPTS
• Software and its engineering → General programming lan-
guages; Development frameworks and environments.

KEYWORDS
Rust; Programming Challenges; Empirical Study; Online Survey

∗This work was supported in part by NSF grants CNS-1955965 and CCF-2145394 and
an IST seed grant from Pennsylvania State University.
†Ziyi Zhang contributed equally with Shuofei Zhu in this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510164

ACM Reference Format:
Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song. 2022.
Learning and Programming Challenges of Rust: A Mixed-Methods Study.
In 44th International Conference on Software Engineering (ICSE ’22), May
21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3510003.3510164

1 INTRODUCTION
Rust is a new programming language designed to build safe and
efficient systems software [31, 36]. The key innovation of Rust is
its suite of safety rules that are checked against during compila-
tion to catch memory-safety and thread-safety issues. Alongside
the language’s safety mechanism, Rust maintains its compiled exe-
cutable programs to be as efficient as C programs. Due to its safety
and efficiency, Rust has become increasingly popular; it has been
rated the most beloved programming language every year since
2016 [55–59, 61] and was the fifth fastest growing language on
GitHub in 2018 [37]. Rust has already been adopted by many open-
source programmers and big tech companies to build safety-critical
software [28, 34, 41, 42, 45, 54].

Rust’s safety mechanism centers around two important concepts:
ownership and lifetime. The basic safety rule requires each value to
have exactly one owner variable, and the value is freed when its
owner variable ends its lifetime. To improve programming flexibil-
ity, Rust extends this basic rule to a suite of extended rules, such
as allowing ownership to be moved to another owner or to be bor-
rowed using a reference, and still guarantees memory safety and
thread safety. Rust’s safety mechanism is elegant and effective. It
essentially prohibits programs from having mutability and alias-
ing at the same time, and inherently avoids many severe memory
bugs (e.g., use after free) and concurrency bugs (e.g., data race). A
recent empirical study reports that if a program is written solely in
safe Rust code, then it will have no memory bugs, confirming the
effectiveness of Rust’s safety mechanism in practice [43].

Unfortunately, Rust is known to have a steep learning curve
and is difficult to program in practice [1, 73]. The ease with which
programmers can write code that violates Rust’s safety rules and
is rejected by the Rust compiler comes down to two reasons. First,
Rust’s safety mechanism is unique, and the related grammar and
semantics are very different from traditional systems programming
languages (e.g., C/C++) [30]. Thus, it is difficult for programmers to
migrate the programming experience they have gained from other
languages to coding in Rust [51]. Second, the design philosophy
of Rust is to reject all suspicious code and force programmers to

https://orcid.org/0000-0003-3689-7668
https://orcid.org/0000-0002-6963-3725
https://orcid.org/0000-0001-7607-0695
https://orcid.org/0000-0002-3185-9278
https://doi.org/10.1145/3510003.3510164
https://doi.org/10.1145/3510003.3510164
https://doi.org/10.1145/3510003.3510164

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 let r1 = &mut out1.a[0];

20 let r3 = &mut out2.a.0;

21 let r2 = &out1.a[1];

22 let r4 = &out2.a.1;

23 *r1 += 1;

24 *r3 += 1;

25 println!("{:?}", r2);

26 println!("{:?}", r4);

PC-1 changes to PC-3

 #![allow(unused_variables)]

 struct Inner { inner: u8 }

 struct Outer1 { a: [Inner; 2] }

 struct Outer2 { a: (Inner, Inner) }

 fn test(in1: &mut Inner, in2: &Inner){}

 fn main() {

 let mut out1 = Outer1 { a:

 [Inner {inner: 1}, Inner {inner: 3}]};

 let mut out2 = Outer2 { a:

 (Inner {inner: 1}, Inner {inner: 3})};

- test(&mut out1.a[0], &out1.a[1]);

+ let (first, rest) = out1.a.split_first_mut().unwrap();

+ test(first, &rest[0]);

 test(&mut out2.a.0, &out2.a.1);

 }

(a) Rust program

error[E0502]: cannot borrow `out1.a[_]` as immutable because it is also

borrowed as mutable

 --> demo-snippet3.rs:14:24

 |

14 | test(&mut out1.a[0], &out1.a[1]);

 | ---- -------------- ^^^^^^^^^^ immutable borrow occurs here

 | | |

 | | mutable borrow occurs here

 | mutable borrow later used by call

 |

note: `a` is an array and can only be borrowed as a whole

 |

 4 | struct Outer1 { a: [Inner; 2] }

 | ^

error: aborting due to previous error

For more information about this error, try `rustc --explain E0502`.

(b) Compiler error messages

Figure 1: A Rust program and its compile error. In Figure 1a, the program is PC-1 in the survey; the red-colored tokens violate a safety rule;
and “+” and “-” denote code added and deleted to fix the violation. We replaced lines 14 and 17 with the code in the cyan-colored rectangle to create
PC-3 in the survey. In Figure 1b, the part in the green-colored rectangle does not belong to the original error messages, and we added it in the survey.

prove their code follows all safety rules. Rust’s safety checks are
strict, sometimes overly so, making Rust code hard to be compiled.

A piece of Rust code is shown in Figure 1a. Structs Outer1 and
Outer2 are declared at lines 4 and 5, respectively. The two structs
are similar to each other in the sense that both of them only contain
one field with the same name and the same contents (two Inner
objects). However, the field of Outer1 is an array, while the field
of Outer2 is a tuple. Function test() takes two Inner objects as
inputs. It uses a mutable reference to borrow the first Inner object
and an immutable reference to borrow the second one. Function
test() is called at line 14 using the two Inner objects in an Outer1
object as inputs. However, the Rust compiler reports an error on
this line (Figure 1b). The reason for the error is that the elements of
an array must be borrowed altogether in Rust (or after an element
is borrowed, all other elements in the same array are also consid-
ered as being borrowed), since the Rust compiler conservatively
assumes an index can access any element in an array. Rust does not
allow a mutable reference to coexist with other references to the
same object to prevent simultaneous mutability and aliasing. Array
out1.a has already been mutably borrowed as the first parameter.
Thus, it cannot be borrowed again as the second parameter. Coun-
terintuitively, line 17 is allowed by the compiler because different
tuple fields can be borrowed separately.

Figure 1b shows the error messages reported by the Rust com-
piler. The compiler points out which ownership rule is violated,
where it is violated, and how it is violated, but it fails to provide
the most important information for the programmer that array
elements are borrowed together in Rust, causing the programmer
to go to Stack Overflow to ask for more explanations about the
code and the error messages [62].

The above case demonstrates the complexity of applying Rust’s
safety mechanism under concrete coding scenarios and the diffi-
culty in writing programs accepted by the Rust compiler. Besides
the safety rule that a mutable reference cannot coexist with an-
other reference to the same object, programmers must also know
how array (and tuple) elements are borrowed to avoid similar mis-
takes. Moreover, the compiler may not always provide all necessary
information for programmers to understand and fix the errors.

Our ultimate goal is to facilitate the learning and programming
of Rust. We take the identification of the challenges imposed by

Rust’s safety rules as the first step. Those rules are unique and
complex. As shown by the empirical study in Section 3, they indeed
cause challenges to Rust programmers in the real world. Rust is
still evolving [10, 67]. Learning Rust is a continuous process, and
programming Rust in practice often involves studying how to apply
a safety rule under a particular coding context. Thus, we do not
differentiate learning from programming in this paper. Overall, we
aim to answer the following research questions (RQs):
• RQ-1:Which Rust safety rules are difficult to understand?
• RQ-2: Under which programming contexts is a safety rule more
challenging to apply?

• RQ-3: How helpful is the Rust compiler in resolving program-
ming errors due to safety-rule violations?
We adopted two approaches to answer these questions. We first

conducted an empirical study on Rust-related Stack Overflow ques-
tions, since programmers usually seek technical advice on Stack
Overflow for issues they cannot resolve on their own [2, 14, 69, 74].
We then performed an online survey to validate the findings of
the empirical study by closely examining how Rust programmers
answer carefully designed survey questions.

We built two datasets for the empirical study. The larger one
contains 15,509 Rust-related Stack Overflow questions, and the
smaller one contains 100 questions caused by violations of Rust’s
safety rules. To answer RQ-1, we built a taxonomy for safety-rule
violations in the small dataset. The taxonomy contains two major
categories: complex lifetime computation and violating ownership
rules. Each of these contains several sub-categories. To answer RQ-
2, we applied the LDA model [9] to the large dataset, and computed
the correlation between violated safety rules and involved code
constructs for the small dataset.Wemanually interpreted the results
to identify scenarioswhere a safety rule ismore challenging to apply.
To answer RQ-3, we examined whether the Rust compiler provides
all necessary information for debugging safety-rule violations in
the small dataset.

The empirical study yielded several important findings. First,
Rust’s safety rules are difficult for programmers to apply in practice,
and computing a lifetime is more challenging than applying an own-
ership rule. Moreover, some safety-rule violations are highly corre-
lated with particular code constructs, indicating the corresponding
rules are more challenging to apply to those code constructs. In

Learning and Programming Challenges of Rust: A Mixed-Methods Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Our findings in the empirical study and how the findings are validated in the online survey.

Findings in Empirical Study (Section 3) Validation in Online Survey (Section 4)
(1) Rust’s complex safety rules indeed bring unique challenges to its
programmers.

(1) A large portion of participants at least “sometimes” felt confused
about Rust’s lifetime (or ownership) rules.

RQ-1: Which Rust safety rules are difficult to understand?

(2) A Rust safety rule may be difficult to apply in concrete scenarios. (2) The average scores in marking program tokens that violated Rust’s
safety rules ranged from 0.39 to 0.75.

(3) Programmers ask more lifetime-related questions on Stack Overflow
than ownership-related questions, suggesting that lifetime computation
is more difficult than applying ownership rules.

(3) Participants who “always” understood compiler errors for lifetime-
rule violations (10.0%) were significantly fewer than those who “always”
understood compiler errors for ownership-rule violations (39.6%).
(4) Programs PD-1 and PD-2 shared the same code constructs, but PD-1
due to errors in lifetime computation was reported with a significantly
higher difficulty level than PD-2 caused by violating an ownership rule.

(4) The majority (91.8%) of safety-rule violations can be fixed using safe
code or well-encapsulated interior unsafe libraries. N.A.

RQ-2: Under which programming contexts is a safety rule more challenging to apply?

(5) The same Rust safety rule has different difficulty levels when applied
to different code constructs, and different safety rules have different
difficulty levels when applied to the same code construct.

(5) Participants performed significantly better in labeling error tokens
for program PC-1 than for program PC-2, where PC-1 and PC-2 shared
the same code constructs but violated different safety rules.
(6) A non-negligible portion of participants were confused by how to
apply the same rule to two different code constructs (array and tuple).

RQ-3: How helpful is the Rust compiler in resolving safety-rule violations?

(6) The Rust compiler may not provide all information necessary to
understand and fix violations of Rust’s safety rules.

(7) Participants shown with enhanced compiler error messages per-
formed significantly better than those with the original messages in
explaining how safety rules are violated for program PC-1.

addition, the Rust compiler may not provide all the necessary infor-
mation for comprehending safety-rule violations. We summarize
our findings in Table 1.

In the online survey, we first asked for participants’ demographic
information, technical background, and previous experience in
interacting with Rust’s safety mechanism and the Rust compiler.
We then showed them four small Rust programs, named PA, PB, PC,
and PD. We only asked participants whether PA and PB could be
compiled to test their Rust knowledge. We sampled PC and PD from
two sets of similar program variants. All variants contained a safety-
rule violation; however, they were different from each other either
in the safety rules they violated or in the code constructs those
violations involved. For both PC and PD, we asked participants to
(1) pinpoint error root causes by highlighting program tokens, (2)
evaluate how difficult it was to comprehend the errors before and
after seeing the error messages, (3) select the violated rules, (4) rate
the helpfulness of the Rust compiler, and (5) describe the error root
causes in their own words. We received 101 valid responses and
conducted extensive data analysis on the responses. As shown in
Table 1, we confirmed many findings of the empirical study with
significant confidence.

Overall, our mixed-methods investigation reveals what to learn
about Rust, how to learn it, and how to interpret compiler error
messages, all of which can benefit Rust learners and programmers.
Moreover, our investigation pinpoints information missed by the
Rust compiler when reporting safety-rule violations and thus pro-
vides valuable guidance for the evolution of the Rust compiler.

In sum, this paper makes the following key contributions.

• We performed the first empirical study on Stack Overflow ques-
tions related to violations of Rust’s safety mechanism.

• We gained six findings regarding the programming challenges
caused by Rust’s safety rules and the helpfulness of the Rust

compiler in debugging safety-rule violations. Those findings can
be useful references for Rust learners and programmers.

• We conducted an online survey and confirmed our findings with
statistical significance.

All our study and survey results can be found at bit.ly/3uNAe88.

2 BACKGROUND
This section gives some background for this project, including
Rust’s safety mechanism and the information provided by the Rust
compiler for safety-rule violations.

2.1 Rust’s Safety Mechanism
Rust’s safety mechanism centers around two critical concepts, own-
ership and lifetime. The basic rule requires that a value is associated
with one and only one owner variable, and that the value is dropped
(freed) when its owner variable’s lifetime ends. Sometimes, the
place where a variable’s lifetime ends is easy to determine, such as
at the end of a function or at a matched curly bracket. However,
there are cases where lifetime computation is much more complex
than inspecting a variable’s lexical scope. To improve its program-
ming flexibility, Rust extends its basic safety rule into a suite of
rules, while still guaranteeing memory safety and thread safety.

Ownership Move. Rust allows a value’s ownership to be moved to
a different owner variable or to a different scope (e.g., a function, a
closure), but it prohibits any access to the previous owner variable
after the move. For example, array foo is moved to function max()
at line 6 in Figure 2, since the parameter type of function max() is
“Vec<i8>”, not “& Vec<i8>” like the function at line 2. Thus, the
Rust compiler reports an error at line 7, since foo has already been
moved and it cannot be accessed anymore.

Ownership Borrow. Rust allows to temporarily borrow a variable’s
ownership using a reference, which can be immutable for read-only

https://github.com/system-pclub/rust-programming-challenges

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song

1 fn max(array: Vec <i8 >) -> i8 { 71 }

2 // fn max(array: &Vec <i8 >) -> i8 { 71 }

3 fn min(array: Vec <i8 >) -> i8 { 8 }

4 fn main() {

5 let foo = vec![71, 23, 8];

6 let max_val = max(foo);

7 let min_val = min(foo);

8 println !("{} {}", max_val , min_val);

9 }

Figure 2: An example of ownership move. The program cannot
be compiled, since foo is moved at line 6 and it cannot be used at line 7.

1 fn bar(x: &mut i32) {

2 println !("{}" , x);

3 }

4 fn main() {

5 let mut a = 100;

6 let y = &a;

7 println !("{}" , y);

8 bar(&mut a);

9 }

Figure 3: An example of ownership borrowing. The program
can be compiled.

accesses or mutable for read-write accesses. A borrow ends at the
last usage site of the reference. Rust requires that a reference can
only be used within its borrowed variable’s lifetime. Rust permits
multiple immutable references to a variable to exist at the same
time, but it only allows at most one mutable reference to a variable
at any time. These rules essentially guarantee all accesses to a
variable are within its lifetime and forbid simultaneous mutability
and aliasing, avoiding many severe memory and concurrency bugs.
For example, in Figure 3, variable a is immutably borrowed by y at
line 6 andmutably borrowed when calling bar() at line 8. Although
the lexical scope of y does not end until the end of function main()
at line 9, because y is not used after line 7, the Rust compiler decides
that the borrow ends at line 7 and that it does not overlap with the
mutable borrow at line 8. Thus, the compiler compiles the program.

Lifetime Annotation. Rust allows programmers to explicitly anno-
tate a variable’s lifetime with an apostrophe followed by an annota-
tion name. Lifetime annotations can be used at function declaration
sites to specify the lifetime relationship among parameters and the
return value, and at struct declaration sites to describe the lifetime
requirement between a struct object and its reference fields. When
checking a function or a struct, the compiler reports errors when
safety-rule violations are inferred based on the lifetime annotations
of the function or the struct. When calling a function, the compiler
inspects whether the real parameters satisfy the corresponding
annotations. Rust allows lifetime elision to reduce the annotation
burden, and the compiler automatically infers elided annotations
during safety checks.

Safe vs. Unsafe. All code discussed so far has been safe Rust code.
Rust permits programmers to use the “unsafe” keyword to bypass
some safety checks and conduct unsafe operations (e.g., pointer
operations, calling an unsafe function). Unsafe code is similar to the
traditional C programming language. A piece of code or a function
can be unsafe. A function can also be interior unsafe by containing
unsafe code internally but exposing a safe API externally, and it can
be used as a safe function. In this paper, we focus on understanding
programming challenges when coding safe code, since safe code
must strictly follow Rust’s safety mechanism, and it is used much
more often than unsafe code in Rust programs [43].

2.2 Rust’s Compiler Error Messages
The Rust compiler serves as the primary communication channel be-
tween programmers and Rust’s safety mechanism. It checks against
the aforementioned safety rules and reports an error when detect-
ing a rule violation. Typically, a piece of error messages contains
three components: (1) the violated safety rule and its corresponding
error code, (2) the lines of code or program tokens that violate the

rule, and (3) some explanations about the violation. For example,
Figure 1b shows the error messages for the program in Figure 1a,
which present the error code (“E0502”) and the violated rule (“can-
not borrow ... as mutable”) at the beginning, underline program
tokens violating the rule in red, and underline several other tokens
in blue to provide more information. Sometimes error messages
contain suggestions about how to fix an error or even directly give
a concrete patch. Moreover, the Rust compiler provides a generic
explanation for each error code, which can be obtained by executing
rustc (e.g., “rustc --explain E0502” in Figure 1b).

Unfortunately, Rust’s safety rules are complex [13, 52] and some
are counterintuitive [43]. Moreover, compiler error messages may
be imprecise [21] or even contain misleading information [19, 20].
Thus, compiler error messages may not be good enough for Rust
programmers to debug and fix safety-rule violations. In Section 3.4,
we combine cognitive task analysis [32] and manual inspection
of safety-rule violations in real Rust programs to systematically
evaluate error messages reported by the Rust compiler.

3 STUDYING STACK OVERFLOW QUESTIONS
This section presents our empirical study on Stack Overflow ques-
tions. Our study aims to answer the research questions previously
presented. Its results can guide the learning process of Rust and im-
prove the interaction between programmers and the Rust compiler.

3.1 Methodology
We construct a large dataset and a small dataset for statistical anal-
ysis and manual inspection, respectively.

3.1.1 Large Dataset. The large dataset contains all Stack Overflow
questions that are labeled with tag “Rust”, have a score greater than
or equal to zero, and have at least one answer as of February 17,
2021. In total, there are 15,509 questions in the large dataset.

We randomly sampled 100 questions from the large dataset and
manually inspected why programmers asked them on Stack Over-
flow. Common reasons include not knowing how to use a library
function (26%), being unable to understand Rust’s safety rules (23%),
being confused by type conversions and type checks in Rust (14%),
not knowing how to implement or use a trait (similar to an interface
in Java) (9%), and failing to use FFI properly (7%).

Finding 1: Rust shares many programming challenges with tra-
ditional programming languages, but its complex safety rules pose
unique difficulties.

3.1.2 Small Dataset. We randomly sampled 100 questions related
to Rust’s safety mechanism from the large dataset to build the
small dataset. We studied these questions by reading their question
texts, answers, and discussions. Moreover, each sampled question

Learning and Programming Challenges of Rust: A Mixed-Methods Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Root causes and fixes of violations in the small
dataset. Safe/Unsafe: directly writing safe/unsafe code; SL: safe li-
braries; IUL: interior unsafe libraries; UL: unsafe libraries; and No:
eight violations do not have fixes.

Root Causes Safe Unsafe SL IUL UL No Total
Complex Lifetime Computation

Intra-procedural 31 0 1 10 0 2 44
Inter-procedural 19 2 1 4 0 4 30
Simple Syntax Error 3 0 0 0 0 0 3

Violating Ownership Rules
Move Rule 12 0 1 5 0 0 18
Borrowing Rule 9 1 3 8 0 2 23
Total 74 3 6 27 0 8 118

contains a code snippet for describing the problem. Based on the
snippets, we successfully implemented standalone programs and
reproduced all problems offline. For eight questions, the programs
can be compiled, but the compilation contradicts the questioners’
understanding. We consider each of these questions to be a case
where the programmer’s understanding violates a safety rule. For all
other questions, the programs cannot be compiled. Among these, 76
programs contain one violation of a safety rule, 14 programs contain
two violations, and the remaining two contain three violations. In
total, there are 118 safety-rule violations in the small dataset.

3.2 Which Safety Rules Are Difficult?
To determine which safety rules are difficult and are more likely
to cause usage violations, we build a taxonomy for the root causes
of the violations in the small dataset. As shown in Table 2, we
first divide the root causes into complex lifetime computation and
violating ownership rules, as they are the two core concepts of
Rust’s safety mechanism. We then separate each of these categories
into several sub-categories.

3.2.1 Complex Lifetime Computation. Lifetime computation may
be much more complicated than referring to a variable’s lexical
scope. Seventy-seven violations are due to complex lifetime compu-
tation. For most of them, programmers estimate a variable’s lifetime
to be longer or shorter than it actually is, thus violating a safety rule.
We further divide these violations into those due to intra-procedural
lifetime computation, those due to inter-procedural lifetime compu-
tation, and those caused by syntax errors when declaring a struct.
These sub-categories do not overlap with each other and cover all
cases of lifetime computation.

Intra-procedural Lifetime Computation. Lifetime computationmay
be difficult even for cases within a single function. Forty-four vio-
lations are in this category, 32 of which are cases where program-
mers miscompute variable lifetimes when using particular code
constructs, including control flow constructs (e.g., if, loop), data
structures (e.g., hashmap, vector), temporary variables, and program
constants. For example, SO#65682678 (Stack Overflow question
65682678 [63]) is caused by miscomputing the lifetime of a refer-
ence held by a closure, while both SO#63428868 and SO#51044568
are caused by errors when computing a lifetime inside a match
block. Eleven out of the 44 violations are due to unsatisfied life-
time requirements at a function declaration or a struct declaration.
For example, when declaring an async function, Rust requires an
explicit lifetime annotation for each input object. Violating this

1 struct Foo {}

2 struct Bar2 <'b> { x: &'b Foo ,}

3
4 impl <'b> Bar2 <'b> {

5 - fn f(&'b mut self)-> &'b Foo {

6 + fn f(&mut self)-> &'b Foo {

7 self.x

8 }

9 }

10 fn f4() {

11 let foo = Foo {};

12 let mut bar2 = Bar2 {

13 x: &foo };

14 bar2.f();

15 let z = bar2.f();

16 }

Figure 4: An example of complex inter-procedural lifetime
computation. The red-colored tokens are the root-cause tokens. “+”
and “-” denote code added and deleted to fix the violation.

requirement is the root cause of SO#62440972. The remaining vio-
lation is due to a lack of basic understanding of Rust.

Inter-procedural Lifetime Computation. Thirty violations are due
to lifetime computation across function boundaries. Among them,
22 are cases where a real parameter does not satisfy the lifetime
requirement of its corresponding formal parameter. The remain-
ing eight are caused by unexpected lifetime extensions through a
function call. Figure 4 shows one such example from SO#39827244.
Function f() is implemented for struct Bar2 at line 5. It borrows a
Bar2 object and returns its field x. Lifetime annotation 'b is speci-
fied for both input reference self and the return value, so that the
questioner thought the borrowing of a Bar2 object ended when the
corresponding return terminated its lifetime. The questioner also
believed that since the return value at line 14 is not saved to any
variable, both the lifetime of the return and the borrow of bar2
ended at line 14. He was confused about how the function still
borrowed bar2 after line 14 and why the compiler complained that
two mutable references to bar2 exist at line 15. The reason is that
lifetime annotation 'b is also applied to struct Bar2 at line 4, so
that the borrow conducted by function f() does not stop until the
borrowed object ends its lifetime. Thus, the borrow of bar2 at line
14 ends at line 16, which is out of the questioner’s expectation.

When declaring a function or a variable, programmers may ex-
plicitly specify all lifetime annotations or choose to elide some
annotations. Among the 30 violations in this category, 16 only in-
volve explicit lifetime annotations (e.g., Figure 4), and the lifetime
miscomputation or mismatch happens at an elided annotation for
the remaining 14 cases (e.g., SO#40053550).

Simple Syntax Errors. Three violations are caused by the misuse
of lifetime annotationswhen declaring or implementing a struct. For
example, the questioner of SO#62422857 only used an apostrophe
to annotate a struct field without providing an annotation name.

3.2.2 Violating Ownership Rules. Ownership rules can be divided
into move rules and borrowing rules [50]. Among the 41 ownership-
rule violations in the small dataset, 18 of them violate a move rule,
and the remaining 23 do not comply with a borrowing rule.

Move Rule Violations. A variable cannot be accessed after it is
moved. Non-compliance with this requirement causes 18 violations.
Of these, 16 violations involve (complex) program constructs. For
example, SO#65873356 is caused by accessing an object that has
already been moved to a called function. As another example, when
an object is moved to a closure, it may be unclear to programmers
whether the move happens at the closure’s creation site or at the
location where the closure is firstly used, which is the root cause
of SO#62125100. The remaining two cases are very simple, and

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song

we speculate the questioners asked the corresponding questions
because they did not know the move rule.

Borrowing Rule Violations.Misuse of references leads to 23 vio-
lations. Two of them are due to mistakenly borrowing a collection
of objects altogether, instead of a single element (e.g., Figure 1a).
Another two are cases where programmers intended to copy an
object using a reference but mistakenly copied the reference itself.
Moreover, 11 cases are due to using a reference to move an object,
which is not allowed in Rust. For example, “a = *x” moves the ob-
ject referenced by x if the object does not implement the Copy trait,
which confused the questioner of SO#35649968. In addition, mu-
tability mismatches (e.g., changing a variable using an immutable
reference) cause two violations. Rust prohibits a closure from re-
turning a mutable reference since it leads two mutable references
existing simultaneously (one is returned and the other is held by the
closure). Not complying with this rule causes three violations. The
remaining three are due to not knowing how to use the reference
counted library (Rc) or library APIs that take a reference as input.

Finding 2: Rust’s safety mechanism may be difficult to apply in
concrete usage scenarios.

Finding 3: More lifetime-related questions are asked on Stack Over-
flow than ownership-related questions, indicating lifetime computa-
tion is more challenging in Rust programming.

3.2.3 How Violations Are Fixed? We examine whether unsafe code
is used in the violation patches to understandwhether programmers
can achieve the desired functionalities while complying with all
safety rules. Since eight violations are cases where programmers’
understanding (not implementation) conflicts with the safety rules
and therefore have no fix, we focus on the remaining 110 cases.

As shown in Table 2, only three violations are fixed by writing
unsafe code directly (column “Unsafe”). For example, the questioner
of SO#64274964 wants to use two editor objects to modify the
same image at the same time. Since the two editors change two
different parts of the image, there is no bug logically. However, the
Rust compiler does not allow the two editors to have two mutable
references to the image at the same time. The patch uses pointers in
unsafe code to have two writers for the same image simultaneously.

Another 27 violations are patched with interior unsafe library
functions (column “IUL” in Table 2). Although the interfaces of
those functions are safe and programmers can use them as safe
functions, they actually contain unsafe code internally. For exam-
ple, SO#57766918 is patched by calling interior unsafe function
into_iter() [48].

All other violations are fixed by writing safe code directly or
using safe library functions (columns “Safe” and “SL” in Table 2).
For example, SO#39827244 in Figure 4 is fixed by removing the
lifetime annotation of self to break the lifetime binding between
the borrow conducted by function f() and the borrowed Bar2
object, and SO#62491845 in Figure 1a is fixed by calling safe standard
library function split_first_mut() [49], which returns the first
element of the input array. These patches only involve safe code.

Finding 4: The majority of safety-rule violations are fixed with
safe code, and a small portion of violations are patched using well-
encapsulated interior unsafe libraries. Programmers usually do not
have to write unsafe code by themselves to fix safety-rule violations.

3.3 When Is a Safety Rule More Confusing?
To detect when a safety rule is more difficult, we first apply the LDA
model [9] to the large dataset. We then follow existing empirical
studies on software artifacts [26, 29, 68] and compute a statistical
metric lift to measure the correlation between root-cause categories
and involved code constructs for the small dataset.

3.3.1 LDA Model. The LDA model can pinpoint the hidden topics
of analyzed documents, and the hidden topics of Rust-related Stack
Overflow questions describe when programmers feel Rust is more
challenging. We take two steps to apply LDA. We first identify
questions related to safety rules. We then run LDA on the questions
and manually interpret the identified topics.

We use Stack Overflow tags to identify questions related to safety
rules. Following the taxonomy in Section 3.2, we divide safety rules
into three groups: lifetime-related rules, move rules, and borrowing
rules. We find 790, 28, and 848 questions respectively for these rule
groups in the large dataset.

For each group of rules, we use the Gensim package [46] to run
bigram LDA on all its identified questions. We remove Rust code in
those questions and consider only question titles, descriptions, and
answers in the analysis. We preprocess the texts using NLTK [7]
to lemmatize words and to remove stop words and punctuations.
We try each of the numbers from 5 to 30 as the topic number to
configure the model. We manually inspect the results for the topic
number with coherence value [33] closest to zero, since a coherence
value closer to zero represents a better clustering result. The topic
numbers with the best coherence value for lifetime, borrowing, and
move are 5, 5, and 9, respectively.

After reading the top words and representative questions re-
ported by LDA, we identify several challenging scenarios for each
group of rules. For example, 204 questions contain the topic of how
to use lifetime annotations in a trait, 32 questions contain the topic
of how to borrow an element from a container, and three questions
are about moving an object in a match block. Rust programmers
can refer to our identified topics to enhance their understanding of
Rust’s safety rules.

3.3.2 Lift Correlation. We use the lift metric to measure the corre-
lation between the root-cause categories in Section 3.2 and code
constructs. The lift of category A and code construct B is computed
as lift(𝐴𝐵) =

𝑃 (𝐴𝐵)
𝑃 (𝐴)𝑃 (𝐵) , where 𝑃 (𝐴𝐵) represents the probability

of a violation that is due to A and also involves B, 𝑃 (𝐴) means
the probability of a violation caused by A, and 𝑃 (𝐵) denotes the
probability of a violation involving B. If lift(𝐴𝐵) equals 1, A is in-
dependent of 𝐵. If lift(𝐴𝐵) is larger than 1, A and B are positively
correlated, indicating when A is applied to B, it is more likely to
cause problems and it is more challenging. The larger the lift value
is, the more positively A and B are correlated. If lift(𝐴𝐵) is smaller
than 1, A and B are negatively correlated.

Among all code constructs with at least ten violations, root
cause “inter-procedural lifetime computation” is most correlated
with the 'static code construct. The lift value is 2.36. Self-defined
annotations and generics are ranked as the second and the third
most correlated code constructs with “inter-procedural lifetime
computation.” Their lift values are 2.32 and 2.14, respectively. “Intra-
procedural lifetime computation” is most correlated with standard

Learning and Programming Challenges of Rust: A Mixed-Methods Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

library Box, function declarations, and return statements, with
lift values 2.19, 1.89, and 1.87, respectively. The top three code
constructs correlated with “move rule violations” are loops (1.96),
vectors (1.38), and function calls (1.19). The largest three lift values
for “borrowing rule violations” are 1.57 for hashmaps, 1.35 for
iterators, and 1.31 for closure declarations.

Many of those widely used code constructs have different lift
values with different root-cause categories. For example, function
declarations are positively correlated with “intra-procedural life-
time computation”, but they are negatively correlated with the
other three categories. As another example, generics are positively
correlated with “inter-procedural lifetime computation”; however,
they are roughly independent of “borrowing rule violations.”

Finding 5: The same rule has different difficulty levels when applied
to different code constructs, and different rules have different difficulty
levels when applied to the same code construct.

3.4 Evaluating Compiler Error Messages
As we discussed earlier, 110 rule violations in the small dataset can
trigger compiler errors1. The Rust compiler associates 20 different
error codes to 103 of the 110 violations. Error code “E0382” (i.e.,
accessing a variable after it is moved) appears most frequently
at 19 times. The compiler does not provide an error code for the
remaining seven violations, which are caused by four different
uncommon problems.

We leverage the 110 violations to evaluate whether the compiler
provides all necessary information for programmers to comprehend
safety-rule violations. This evaluation comes in two steps. We first
conduct cognitive task analysis [15] to identify the steps taken by
Rust experts to comprehend error messages. We then follow those
steps to analyze whether the information required at each step is
provided in the error messages for each violation.

Cognitive Task Analysis (CTA). A CTA typically interviews three
to five experts for a subject [11]. Our CTA aims to identify how
experts comprehend Rust’s compiler error messages, rather than to
sample their opinions on particular compiler errors. Thus, we chose
three paper authors as the CTA participants and another author as
the CTA analyst. All the CTA participants have at least one year’s
experience in programming Rust and use Rust on a weekly basis.

Our CTA contains a think-aloud observation and a semi-structured
interview [12]. In the think-aloud observation, participants were
asked about their general impression of Rust’s compiler errors and
their steps to understand compiler error messages. The analyst
recorded each participant’s think-aloud and analyzed the recording
to identify key steps in comprehending error messages. In the semi-
structured interview, the analyst asked participants questions about
the key steps for the purpose of validation. The three participants
are interviewed separately to avoid premature consensus.

Both the think-aloud observation and the semi-structured in-
terview were audio-recorded and automatically transcribed. Each
participant was required to inspect another participant’s response.
The analyst combined all responses into a description of the proce-
dures, decisions/actions, concepts, and conditions/situations used
by experts to comprehend Rust’s compiler error messages.

1The compiler version we evaluate is 1.50.0, which was released in February 2021.

We further invited three external experts to evaluate the de-
scription. We recruited the experts using the snowball method [22].
Specifically, we asked our friends to help find academic researchers
who had published papers on Rust recently, and our friends in turn
asked their friends for help. All external experts have at least two
years’ Rust experience and use Rust on a daily basis. We believe
they have sufficient expertise to validate the description of the error
comprehension steps. The initial average proportion of agreement
was 0.7, a satisfactory agreement level [27], indicating our method
is sufficient to capture how programmers comprehend Rust’s com-
piler errors. We updated a few description components based on
the external experts’ comments. In the end, the description was
agreed upon by both internal and external experts.

Studying Violations.We then follow the description to examine
whether error messages contain all the needed information for
comprehending each violation. For 59 out of the 110 violations, their
error messages contain all necessary information. Programmers
can use the highlighted code and the compiler’s explanations to
determine why the Rust compiler rejects the code. Error messages
miss some important information for the remaining 51 violations;
these fall into three categories.

First, for nine violations, the Rust compiler fails to explain how
a safety rule works on a particular code construct. For example, the
error messages in Figure 1b do not mention that elements of an
array cannot be borrowed individually in Rust.

Second, for 32 violations, the compiler fails to explain the key
steps in computing a lifetime or a borrowing relationship. For ex-
ample, the error messages associated with SO#39827244 in Figure 4
do not explain why the borrow of bar2 at line 14 does not end until
the borrowed object terminates its lifetime at line 16.

Third, in the remaining ten cases, the compiler fails to explain the
relationship between two lifetime annotations, making it difficult
to understand the annotation mismatch in the error messages. For
example, SO#53835730 is due to using two references with different
lifetimes to call a function that requires two inputs to have the same
lifetime. The compiler simply complains that the second reference
does not live as long as the elided lifetime annotation of the first
reference. However, it does not explain that the first reference is the
input of the caller function and has a lifetime longer than the caller.
In contrast, the second reference is a reference to a local variable
and has a lifetime shorter than the caller.

Finding 6: The Rust compiler may not provide all information nec-
essary to comprehend violations of Rust’s safety rules.

4 SURVEYING RUST PROGRAMMERS
We conducted an online survey on Qualtrics [44] to validate the
findings presented in Section 3. The survey was approved by the
institutional review board (IRB) office at the authors’ university.
This section gives the survey details and survey results.

4.1 Methodology
4.1.1 Recruitment. We required participants to be at least 18 years
old, not be residing in the European Economic Area, and have some
Rust coding experience. To recruit participants, we distributed our
survey by posting threads on Rust-specific forums and newsletters,

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song

Table 3: Program variants of PC and PD. PC-1 in Figure 1a
and PD-1 in Figure 4 are the two base programs. (𝑥 , 𝑦) represents
that 𝑥 participants were assigned the original error messages and 𝑦

participants were assigned the enhanced messages.

ID Root Cause Code Construct Err. Code #Responses
PC-1 borrowing function, array E0502 34 (16, 18)
PC-2 move function, array E0508 31
PC-3 borrowing local variable, array E0502 32
PD-1 inter lifetime function, annotation E0499 36 (19, 17)
PD-2 move function, annotation E0382 29
PD-3 intra lifetime closure, annotation E0499 32

sending emails to programmers who recently committed code to
open-source Rust projects, and contacting industrial collaborators.

4.1.2 Stimuli. We presented four Rust programs (PA, PB, PC, and
PD) to each participant. All the programs were designed based
on the studied Stack Overflow questions in Section 3. PB can be
compiled, while the other three all contain safety-rule violations.
PA is shown in Figure 2 and PB is shown in Figure 3. They are
identical for all participants. PC and PD are sampled from two
program sets. Each set contains a base program (PC-1 or PD-1) and
two variant programs that are synthesized by changing either the
base program’s violated safety rule (PC-2 or PD-2) or involved code
constructs (PC-3 or PD-3). Thus, we can compare survey results
between a base program and its variants (e.g., PC-1 vs. PC-3) to
validate Finding 5 in Section 3.3.

Table 3 shows the information of program variants in the two
sets. PC-1 is the program in Figure 1a and it is the base program in
the PC set. The Rust compiler complains that a mutable reference
to out1 coexists with an immutable reference to out1 with error
code “E0502.” We created PC-2 by changing function test() to
move its first parameter. Then a different safety rule that states that
an array element cannot be moved out of its array was violated
(error code “E0508”). As shown in Figure 1a, we changed the code
constructs involved in the error to create PC-3. We replaced the two
function calls at lines 14 and 17 with several borrowing operations
and assignments, with the purpose being to have out1’s mutable
reference r1 to coexist with out1’s immutable reference r3. In
addition, we enhanced the compiler error messages of PC-1 by
explicitly explaining that an array can only be borrowed as a whole
in Rust (the green-colored rectangle in Figure 1b).

PD-1 in Figure 4 is the base program of the PD set. How we
created PD-2 and PD-3 is similar to how we created PC-2 and PC-3.
See Table 3 for the violated rules and involved code constructs.

4.1.3 Procedure. Our survey consisted of three phases. We discuss
their details as follows.

Phase 1: Demographics and On-Board Experience in Rust.We col-
lected demographic information at the beginning of the survey to
validate whether participants were qualified. We asked participants
to provide their age groups, locations, and years of Rust experience.
If a participant did not satisfy any recruitment requirement, our
survey automatically terminated. We then asked participants about
their genders, races, and ethnic groups.

We gauged participants’ expertise levels in Rust by asking them
how long they have learned Rust, how often they program with
Rust, how many lines of code are in the largest Rust programs

they have written, and whether Rust is their most frequently used
language. We also asked participants to self-rate their expertise on
a 10-point scale ranging from 1 (“beginner”) to 10 (“expert”).

To examine participants’ previous Rust coding experience, we
asked participants how often they feel confused about Rust’s owner-
ship/lifetime rules and how often they can understand the compiler
error messages when their code violates the safety rules. Possible
options include “never”, “sometimes”, “most of the time”, and “al-
ways.” We also asked whether Rust has other language features
they consider challenging.

Phase 2: Evaluating Rust Programs.We showed participants the
four programs at this phase. We first asked them whether PA and
PB could be compiled. We then explicitly told them that both PC
and PD contained a safety-rule violation, and we asked them to
answer the following six questions.
• Q1: We asked participants to highlight the program tokens that
were the error’s root cause (i.e., tokens where safety rules were
violated). Figure 1a and Figure 4 show our expected highlighting
for PC-1 and PD-1, respectively.

• Q2:We requested participants to rate the difficulty of identifying
the root cause on a 10-point scale, where “1” means “very easy”
and “10” means “very difficult.”

• Q3:We asked participants to choose the violated rule among ten
options, which included the correct answer, four rules similar to
the violated one, and five rules different from the violated one.
The similarity between two safety rules was computed as the
absolute value between their error codes [35].

• Q4:We asked participants to rate the difficulty of root cause iden-
tification again after showing them the compiler error messages.
If PC-1 or PD-1 was sampled, either the original error messages or
the enhanced version would be presented with equal probability.

• Q5: We requested participants to gauge the helpfulness of the
error messages on a 10-point scale, where “1” means “not helpful”
and “10” means “extremely helpful.”

• Q6: In this open-ended question, we asked participants to de-
scribe how the safety rule was violated.We suggested they should
consider in their answers the involved program constructs, how
the rule was applied to the code context, and why the compiler
highlighted some code.

Of the six questions, Q1, Q3, and Q6 had objectively correct
answers, while the other three were subjective in nature. Q4–Q6
were asked after showing participants compiler error messages, and
their results can reveal the effects of viewing the error messages.

Phase 3: Post-Session Questions.Weasked about participants’ over-
all technical background at this stage, including years of program-
ming, favorite programming languages, self-rated programming
expertise levels, how many lines of code are in the largest programs
they have ever worked on, and job titles. We also asked participants
why they learn or use Rust.

4.2 Survey Results
We distributed the survey from March 12 to April 6, 2021, and
received 502 completed responses. Three paper authors inspected
the responses together and identified 101 of them as valid. We
focused our data analysis on the valid responses. Invalid responses
included those that were finished in a very short time (e.g., fewer

Learning and Programming Challenges of Rust: A Mixed-Methods Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

than five minutes), had open-ended question answers identical to
other responses, or came from unwanted sources.

4.2.1 Phase 1. The majority of the 101 participants were male
(91.1%) and in the 18–34 age range (85.1%). The top two most com-
mon locations were the U.S. (53.5%) and China (9.0%). Most par-
ticipants were White (47.5%) or Asian (27.7%). There were also
responses from Hispanics (5.9%) and African Americans (2.0%).
Overall, the demographics of our participants revealed considerable
diversity and reflected the demographic distribution of real-world
Rust programmers [52, 53].

The participants were relatively experienced in Rust (69.3% had
learned Rust for more than one year and 63.3% had implemented
a Rust program with more than 1, 000 lines of code). Rust was the
most frequently used language for 48.5% of the participants, and
64.4% used Rust on a daily or weekly basis. The average level of
self-rated Rust expertise was 5.3 out of 10, and the median was 6.

Most participants (85.1%) were at least “sometimes” confused
by lifetime rules, but only 52.4% of them held the same feeling for
ownership rules. A chi-squared test confirmed the difference was
significant (𝜒2(1) = 23.6, p < 0.001). Moreover, the proportion of
participants who could “always” understand compiler errors for
lifetime-rule violations (10.0%) was significantly smaller than the
proportion of participants who could “always” understand compiler
errors for ownership-rule violations (39.6%, 𝜒2(1) = 22.4, p < 0.001).
These results are consistent with Finding 3 in Section 3.2.

Besides ownership and lifetime, other challenging language fea-
tures mentioned by more than ten participants were Rust’s type
systems (26), asynchronous programming (25), trait bounds and
generics (22), and macros (12).

4.2.2 Phase 2. Most (83.2%) of the participants correctly answered
that PA could not be compiled, 77.2% correctly answered that PB
could be compiled, and 70.3% correctly answered both of the two
questions. These results show the participants had reasonably ade-
quate knowledge of Rust.

As discussed in Section 4.1.2, PC and PD were sampled from two
different program sets. Each set contained three program variants.
Table 3 shows the number of participants assignedwith each variant.
We conducted a one-way ANOVA test for each combination of a
program set and a research question (Q1–Q6). The null hypothesis
was that there was no difference among the results obtained from
the three variants. The significance level was 0.05. Since there were
three pairwise comparisons in each program set, we adjusted all
computed pairwise 𝑝-values using Bonferroni correction [8]. We
denoted adjusted 𝑝-values using 𝑝𝑎𝑑 𝑗 . . We mainly focused on (PC-1,
PC-2), (PC-1, PC-3), (PD-1, PD-2), and (PD-1, PD-3), since variants
in these pairs are different from each other in terms of either the
violated rules or the involved code constructs (see Table 3).

Q1: Error Token Highlighting. We categorized program tokens
into three types for grading: root-cause tokens, relevant tokens, and
irrelevant tokens. Root-cause tokens represented where safety rules
were violated (e.g., the red-colored tokens in Figure 1a and Figure 4).
Relevant tokens were those close to or related to root causes, but
that did not directly cause programming errors (e.g., the uncolored
tokens at line 14 in Figure 1a). Considering participants might
accidentally highlight extra tokens close to the root causes, we

Table 4: Average scores and standard errors. Q1 and Q6 were
manually graded with scores ranging from 0 to 1. Q3 was scored 0 or
1 on correctness. Q2, Q4, and Q5 are 10-point rating-scale questions.
Standard errors are in parentheses. 𝑜 (𝑒) in a subscript denotes original
(enhanced) error messages. Error messages were shown in between Q3
and Q4, and thus they did not impact Q1–Q3.

ID Q1 Q2 Q3 Q4 Q5 Q6
PC-1 0.74 (0.06) 6.12 (0.44) 0.76 (0.07) 3.71 (0.47) 8.50 (0.32) 0.69 (0.05)
PC-1𝑜 - - - 3.46 (0.74) 8.93 (0.32) 0.56 (0.08)
PC-1𝑒 - - - 3.89 (0.62) 8.15 (0.51) 0.78 (0.07)
PC-2 0.39 (0.08) 5.27 (0.40) 0.48 (0.09) 4.03 (0.44) 7.45 (0.44) 0.56 (0.05)
PC-3 0.63 (0.06) 6.32 (0.37) 0.84 (0.06) 3.34 (0.41) 7.76 (0.40) 0.74 (0.03)
PD-1 0.53 (0.09) 7.63 (0.47) 0.22 (0.07) 5.28 (0.56) 7.19 (0.42) 0.66 (0.04)
PD-1𝑜 - - - 4.67 (0.86) 7.33 (0.63) 0.68 (0.04)
PD-1𝑒 - - - 5.82 (0.72) 7.06 (0.59) 0.65 (0.06)
PD-2 0.75 (0.07) 5.59 (0.51) 0.59 (0.09) 3.24 (0.46) 8.24 (0.38) 0.74 (0.05)
PD-3 0.46 (0.09) 7.09 (0.43) 0.37 (0.08) 4.57 (0.47) 6.83 (0.41) 0.58 (0.04)

did not penalize the selection of relevant tokens. Irrelevant tokens
had nothing to do with the root causes. Highlighting irrelevant
tokens indicated participants’ misunderstanding of programming
errors, and thus we penalized the marking of irrelevant tokens.
We computed a score for each answer by dividing the number of
highlighted root-cause tokens by the number of highlighted root-
cause tokens and irrelevant tokens. Scores ranged from 0 to 1, with
larger scores representing better answers.

The average highlighting scores fell in the range from 0.39 to 0.75
in Table 4, implying that applying Rust’s safety rules and identifying
error tokens are challenging in general (Finding 2 in Section 3.2).

The ANOVAs confirmed that the main effect of program variant
was significant for both the PC set (𝑝 = 0.004) and the PD set
(𝑝 = 0.030). Among the four comparison pairs, PC-1 and PC-2 were
the only pair to have a significant difference with 𝑝𝑎𝑑 𝑗 . equal to
0.003. Since PC-1 and PC-2 shared the same code constructs but
violated different safety rules (see Table 3), this result reveals that
different safety rules can have different difficulty levels when applied
to the same code construct (Finding 5 in Section 3.3).

To understand how different code constructs impacted root-
cause highlighting, we further examined the highlighting results
for the PC variants, since PC-1, PC-2, and PC-3 all contained two
similar code constructs: array out1.a and tuple out2.a. For all
of these variants, tokens related to the array were the root-cause
tokens, while tokens related to the tuple (e.g., the tokens at line 17 in
Figure 1a) were irrelevant and misleading. We counted how many
participants selected tuple-related tokens. The results for PC-1, PC-
2, and PC-3 were 10, 9, and 14, respectively. Such results suggest
that programmers can be confused when applying the same safety
rule to different code constructs, explaining Finding 5 in Section 3.3.

Q2 & Q4: Difficulty Ratings. Column “Q2” in Table 4 shows the
average difficulty ratings before participants saw the error mes-
sages. The main effect of program variant was significant for the
PD set (p = 0.009) only. For the two comparison pairs in the PD set,
PD-1 was significantly more difficult than PD-2 (𝑝𝑎𝑑 𝑗 . = 0.01), indi-
cating that participants perceived the error due to “inter-procedural
lifetime computation” to be more difficult to comprehend than the
error caused by “violating a move rule” on the same code construct
(Finding 3 in Section 3.2 and Finding 5 in Section 3.3). There was
no significant difference between PD-1 and PD-3.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song

The average difficulty ratings showed the same pattern after
participants viewed the error messages (column “Q4” in Table 4).

Q3: Violated Rule Selection. Column “Q3” in Table 4 shows the
correct answer rates for selecting violated safety rules. The main
effect of program variant was significant for both PC variants (p =

0.003) and PD variants (p = 0.008). Among the four comparison
pairs, only the correct answer rate of PD-1 was significantly lower
than that of PD-2 (𝑝𝑎𝑑 𝑗 . = 0.008), demonstrating PD-1’s violated
safety rule was more difficult to identify than PD-2’s (Finding 5).

To understand the difficulty in identifying violated rules, we
inspected the wrongly selected options. In total, there were four
wrong options chosen by at least five participants, one for PC-2,
two for PD-1, and one for PD-3. PC-2 violated a move rule, but
six participants thought an object was borrowed again after being
mutably borrowed in PC-2, violating a borrowing rule. Those par-
ticipants did not notice that function test()moved (not borrowed)
its input in PC-2. The lifetime computation of a mutable reference
in PD-1 was complex, and the lifetime overlapped with another
mutable reference to the same object. However, seven participants
thought the rule that had been violated was that an owner variable
cannot be used after the ownership is borrowed. This rule was also
violated in PD-1, but it was not as precise as the correct answer.
Five participants thought a reference was used beyond the bor-
rowed object’s lifetime. The participants noticed that the lifetime
computation was complex, so they guessed this lifetime rule was
violated. For PD-3, six participants said that the violated rule was
the one that forbids moving an object through a reference, but the
program actually conducted a copy (not move). These results show
that without knowing the correct violated safety rule, programmers
easily inspected a programming error in a wrong direction.

Q5: Helpfulness of Compiler Error Messages. Column “Q5” in Ta-
ble 4 shows the average helpfulness ratings of the error messages.
PC-1 had the highest average rating (8.50), and PD-3 had the lowest
average rating (6.83). The main effect of program variant was sig-
nificant for the PD set (𝑝 = 0.039) only, and there was no significant
difference for the four comparison pairs.

Q6: Error Description in Programmers’ Own Words.Wefirst devel-
oped a scoring rubric for grading.We identified two scoring schemes
representing the “what” aspect and the “how” aspect of error root
causes. We gave more weight to the “how” aspect (60%). For each
theme, we defined three score levels (30%, 60%, and 100%) and for-
malized the criteria at each level. Based on the rubric, two paper
authors graded participants’ responses independently. The average
percentage of agreement between the two graders was 50%. The
two graders resolved the discrepancies between them by revisiting
the criteria over multiple discussions.

Column “Q6” in Table 4 shows the average score for each pro-
gram variant. The highest score was 0.74 for PD-2, and the lowest
score was 0.56 for PC-2. The main effect of program variant was
significant for both the PC set (𝑝 = 0.03) and the PD set (𝑝 = 0.03),
but there was no significant difference for any comparison pairs.

We further inspected how participants answered Q6 together
with their answers to previous questions to deeply understand par-
ticipants’ error comprehension process. For PC-2, six participants
selected that a borrowing rule was violated in Q3, which was wrong,
but five of them correctly mentioned move or ownership in their

Q6 answers. We anticipated that the error messages helped the five
participants figure out the correct root cause. For PD-1, five partici-
pants noticed the violation was due to the lifetime extension of the
borrow of bar2 at line 14 (Figure 4). However, they thought the
extension was caused by the return at line 7, as indicated by their
explanations of Q6. This understanding was wrong; the extension
was actually caused by the lifetime annotations (i.e., 'b) at lines 4
and 5. This result demonstrates that Rust’s safety rules are complex
in practice and that although programmers know that a safety rule
has been violated, they may not know the true reason for the violation.

Effect of Enhanced Error Messages.We created enhanced versions
of compiler error messages for PC-1 and PD-1. Since the error mes-
sages were shown to participants after Q3, we compared the effects
of the enhanced version and the original version on Q4–Q6 us-
ing two-sample t-tests. The enhanced version of PC-1 showed a
significantly better average score than the original version on the
objective question Q6 (𝑝 = 0.015). Moreover, four participants ex-
plicitly mentioned the extra information we provided in PC-1’s
error messages in their Q6 answers. These results confirm that com-
piler error messages may not contain all necessary information for
Rust programmers to debug safety-rule violations and that providing
more facilitating information can improve programmers’ performance
(Finding 6 in Section 3.4).

The enhanced error messages did not significantly impact par-
ticipants’ responses for either PC-1 or PD-1 on the two subjective
questions (Q4 and Q5) or for PD-1 on Q6.

4.2.3 Phase 3. About 75.2% of the participants had at least three
years’ programming experience. The average self-rated program-
ming expertise was 6.3 and the median was 7. A bit less than half
(46.5%) of the participants had worked on a programwith more than
10,000 lines of code. The general technical background of the par-
ticipants was consistent with their Rust background as surveyed in
Phase 1. The top two most common job titles/roles were “software
engineers” (43.6%) and “students” (31.2%). Besides Rust, the top
three programming languages with which the participants had the
most experience were Python, C/C++, and JavaScript. The top three
most favorite Rust features were safety, performance, and language
features (e.g., functional programming styles, pattern matching).
These results match our expectations of Rust programmers.

5 DISCUSSION
This section discusses the implications of our studies, threats to its
validity, and our procedures to reduce those threats’ influence.

Implications to the Rust Community. Our findings can bene-
fit the Rust community from four aspects. First, Rust learners can
spend more effort on the pinpointed programming scenarios where
a safety rule is especially challenging to gain a deeper understand-
ing of the rule. Second, for Rust programmers, our findings can re-
mind them not to rely solely on compiler feedback when debugging
safety-rule violations, since the error messages may miss essential
information to comprehending the violations. Third, Rust language
designers can improve the Rust compiler by providing the missed
information when reporting safety-rule violations. Fourth, Rust re-
searchers can leverage our findings to build IDE tools and automated
compiler-error fixing tools to improve Rust’s programmability.

Learning and Programming Challenges of Rust: A Mixed-Methods Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Values Beyond Rust. Our work can benefit other programming
languages in twoways. First, we demonstrate how to statistically an-
alyze Stack Overflow questions to identify programming challenges
for Rust and use code constructs to describe when a safety rule is
especially confusing. Future work can leverage similar methods to
detect programming difficulties for other languages. Second, we
construct pairs of program variants by changing code constructs or
involved grammar to compare survey participants’ performance in
a controlled manner. Researchers and practitioners can use similar
methods to build program variants in other programming languages
for testing and learning purposes.

Threats to Validity. Similar to previous empirical studies and user
studies, our findings need to be considered with our methodology
in mind. They have several potential threats to their validity.

For internal validity threats, our survey participants might not
have been representative enough, they might have referred to Rust
tutorials in the survey, malicious persons or online bots might
have submitted responses, and both the study on Stack Overflow
questions and the grading of open-ended questions were based
on subjective assessments. We took several methods to ensure
internal validity. First, we recruited a relatively large number of
participants from multiple channels. Second, we explicitly required
participants not to refer to external resources multiple times in the
survey. Third, three authors inspected all responses and filtered out
the invalid ones together. Fourth, at least two authors studied each
Stack Overflow question and graded each open-ended question.

There are two possible external threats to our study’s validity.
First, we mainly leveraged Stack Overflow questions for identifying
programming challenges of Rust. Those questions could not be re-
solved by the questioners, and thus they may be more difficult than
programming errors in daily practice. We also acknowledge that
some of the programming challenges of Rust are never submitted
to Stack Overflow and thus cannot be identified through studying
Stack Overflow questions. Second, our survey was conducted on
Qualtrics. Reading Rust code on Qualtrics is different from cod-
ing Rust in a real development environment. Thus, participants’
performance in our study may not reflect their common behaviors.

6 RELATEDWORK

User Studies on Rust. The Mozilla Rust team conducts annual
surveys to understand Rust programmers’ backgrounds and fig-
ure out ways to improve Rust. The survey in 2020 reported that
lifetime and ownership are the two most difficult topics for program-
mers to grasp [53], which aligns with our observations in Section 3.
Zeng and Crichton [73] analyzed Rust-related posts and comments
collected from online Rust communities and identified several obsta-
cles to the adoption of Rust. Crichton [13] conducted a case study to
show the challenges of interpreting Rust’s compiler error messages.
Abtahi and Dietz [1] conducted a laboratory study to examine the
methods employed by programmers when they learned Rust. They
found that online code examples and compiler errors were helpful
to Rust learners. They also reported that sometimes Rust learn-
ers found compiler error messages hard to interpret because the
messages were full of terminologies. Fulton et al. [18] identified
benefits and challenges of adopting Rust through a semi-structured
interview and an online survey.

Our study differs from those existing ones in study goals. Specif-
ically, we aim to identify programming challenges incurred by
Rust’s safety rules and pinpoint scenarios where a safety rule is
more difficult to understand.

Empirical Studies on Rust Code. Researchers have conducted
empirical studies to understand real-world Rust code from differ-
ent points of view, like how unsafe code is used [3, 17, 40], how
many Rust libraries depend on external C/C++ libraries [65], and
the buggy code patterns of safety issues that bypass Rust’s compiler
checks [43, 71]. Those empirical studies focus on Rust programs
that can be compiled. However, we focus on Rust programs that
are rejected by the Rust compiler, because we aim to identify pro-
gramming challenges imposed by Rust’s compile-time checks.

Usability Studies on Programming Languages. Researchers
conducted studies to understand how different factors (e.g., syntax,
APIs) impact programmers’ learning and coding for other program-
ming languages (e.g., Java, C) [16, 23, 38, 39, 64]. These studies
provide valuable findings and insights in improving software de-
velopment processes. However, Rust is very different from those
languages due to its unique grammar and its strict safety checks.
For example, the majority of the confusing C code snippets studied
by Gopstein et al. [23] cannot be compiled by the Rust compiler
and thus cannot cause problems for Rust programmers anymore.
Due to the difference, we believe a usability study (like ours) to
understand how Rust’s grammar and its safety checks impact its
learning and programming is solely desired.

Comprehending Compiler Errors. Researchers performed several
studies to understand how programmers interpret compiler error
messages for traditional programming languages (e.g., C/C++) [4, 5].
However, there is no similar study for Rust. Rust features strict
compile-time checks that depend on complex safety rules. Compiler
error messages are critical feedback for programmers, especially
when it comes to safety-rule violations. Thus, it is particularly
important to study how Rust programmers comprehend compiler
error messages and to improve error messages accordingly.

Leveraging and Improving Stack Overflow. Stack Overflow is
an open community for developers to ask technical questions and
share their knowledge [60]. Previous researchers leveraged Stack
Overflow data to understand real-world development problems [2,
14, 25, 66, 72, 74] and built tools to improve the usages of Stack
Overflow [6, 24, 47, 70, 75]. However, there is no prior work on
studying Rust-related Stack Overflow questions and our study in
Section 3 is the first one to examine those questions.

7 CONCLUSION
Rust conducts extensive static checks at the compile time to catch
memory-safety and thread-safety issues. Given the increasing pop-
ularity of Rust, it is critical to understand the language’s learning
and programming challenges, especially those posed by its safety
checks and the underlying safety mechanism. For this purpose, we
conduct the first comprehensive, empirical study on Rust-related
Stack Overflow questions. We expect that our findings can guide
the learning, programming, and compiler evolution of Rust. In ad-
dition, we further perform a survey with 101 Rust programmers
and confirm many of our findings with significant confidence.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Shuofei Zhu, Ziyi Zhang, Boqin Qin, Aiping Xiong, and Linhai Song

REFERENCES
[1] Parastoo Abtahi and Griffin Dietz. 2020. Learning Rust: How Experienced

Programmers Leverage Resources to Learn a New Programming Language.
In Extended Abstracts of the 2020 CHI Conference on Human Factors in
Computing Systems (CHI EA ’20). Honolulu, HI, USA. https://doi.org/10.1145/
3334480.3383069

[2] Emad Aghajani, Csaba Nagy, Olga Lucero Vega-Márquez, Mario Linares-Vásquez,
Laura Moreno, Gabriele Bavota, and Michele Lanza. 2019. Software docu-
mentation issues unveiled. In Proceedings of the 41st IEEE/ACM International
Conference on Software Engineering (ICSE ’19). Montreal, QC, Canada. https:
//doi.org/10.1109/ICSE.2019.00122

[3] Vytautas Astrauskas, Christoph Matheja, Federico Poli, Peter Müller, and Alexan-
der J Summers. 2020. How do programmers use unsafe rust? Proceedings of the
ACM on Programming Languages 4, OOPSLA (2020). https://doi.org/10.1145/
3428204

[4] Titus Barik, Denae Ford, Emerson Murphy-Hill, and Chris Parnin. 2018. How
should compilers explain problems to developers?. In Proceedings of the
26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (FSE ’18). Lake Buena
Vista, FL, USA. https://doi.org/10.1145/3236024.3236040

[5] Titus Barik, Justin Smith, Kevin Lubick, Elisabeth Holmes, Jing Feng, Emer-
son Murphy-Hill, and Chris Parnin. 2017. Do developers read compiler error
messages?. In Proceedings of the 39th IEEE/ACM International Conference on
Software Engineering (ICSE ’17). Buenos Aires, Argentina. https://doi.org/10.
1109/ICSE.2017.59

[6] Stefanie Beyer, Christian Macho, Massimiliano Di Penta, and Martin Pinzger.
2018. Automatically classifying posts into question categories on stack overflow.
In Proceedings of the 2018 IEEE/ACM International Conference on Program
Comprehension (ICPC ’18). Gothenburg, Sweden. https://doi.org/10.1145/
3196321.3196333

[7] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural Language Processing
with Python (1st ed.). O’Reilly Media, Inc.

[8] J Martin Bland and Douglas G Altman. 1995. Multiple significance tests: the
Bonferroni method. BMJ 310, 6973 (1995). https://doi.org/10.1136/bmj.310.6973.
170

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet
Allocation. J. Mach. Learn. Res. 3 (March 2003), 993–1022. https://doi.org/10.
5555/944919.944937

[10] Mara Bos. 2021. The Plan for the Rust 2021 Edition | Rust Blog. https://blog.rust-
lang.org/2021/05/11/edition-2021.html (Accessed on 09/01/2021).

[11] Richard E Clark, Carla M Pugh, Kenneth A Yates, Kenji Inaba, Donald J Green,
and Maura E Sullivan. 2012. The use of cognitive task analysis to improve
instructional descriptions of procedures. Journal of Surgical Research 173, 1
(2012), e37–e42. https://doi.org/10.1016/j.jss.2011.09.003

[12] Nancy J Cooke. 1994. Varieties of knowledge elicitation techniques. International
Journal of Human-Computer Studies 41, 6 (1994). https://doi.org/10.1006/ijhc.
1994.1083

[13] Will Crichton. 2020. The Usability of Ownership. arXiv:2011.06171 [cs.PL]
[14] Alex Cummaudo, Rajesh Vasa, Scott Barnett, John Grundy, and Mohamed Ab-

delrazek. 2020. Interpreting Cloud Computer Vision Pain-Points: A Mining
Study of Stack Overflow. In Proceedings of the 42nd IEEE/ACM International
Conference on Software Engineering (ICSE ’20). Seoul, South Korea. https:
//doi.org/10.1145/3377811.3380404

[15] Dan Diaper. 2004. Understanding task analysis for human-computer interaction.
The handbook of task analysis for human-computer interaction (2004), 5–47.

[16] J. J. Dolado, M. Harman, M. C. Otero, and L. Hu. 2003. An empirical investigation
of the influence of a type of side effects on program comprehension. IEEE
Transactions on Software Engineering 29, 7 (2003). https://doi.org/10.1109/TSE.
2003.1214329

[17] Ana Nora Evans, Bradford Campbell, and Mary Lou Soffa. 2020. Is rust used safely
by software developers?. In Proceedings of the 42nd IEEE/ACM International
Conference on Software Engineering (ICSE ’20). Seoul, South Korea. https:
//doi.org/10.1145/3377811.3380413

[18] Kelsey R Fulton, Anna Chan, Daniel Votipka, Michael Hicks, and Michelle L
Mazurek. 2021. Benefits and Drawbacks of Adopting a Secure Programming
Language: Rust as a Case Study. In Proceedings of the 17th USENIX Symposium
on Usable Privacy and Security (USENIX SOUPS ’2021). Virtual Event, USA.

[19] GitHub#67651. 2019. Confusing/incorrect error message with incoherent imple-
mentations and async blocks. https://github.com/rust-lang/rust/issues/67651
(Accessed on 09/01/2021).

[20] GitHub#71584. 2020. Wrong error message for missed type inference. https:
//github.com/rust-lang/rust/issues/71584 (Accessed on 09/01/2021).

[21] GitHub#79429. 2020. Inaccurate error message for const operations in type param-
eters. https://github.com/rust-lang/rust/issues/79429 (Accessed on 09/01/2021).

[22] Leo A. Goodman. 1961. Snowball Sampling. The Annals of Mathematical
Statistics 32, 1 (1961).

[23] Dan Gopstein, Jake Iannacone, Yu Yan, Lois DeLong, Yanyan Zhuang, Mar-
tin K.-C. Yeh, and Justin Cappos. 2017. Understanding Misunderstandings
in Source Code. In Proceedings of the 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE ’17). Paderborn, Germany. https://doi.org/10.
1145/3106237.3106264

[24] Yi Huang, Chunyang Chen, Zhenchang Xing, Tian Lin, and Yang Liu. 2018. Tell
Them Apart: Distilling Technology Differences from Crowd-Scale Comparison
Discussions. In Proceedings of the 33rd IEEE/ACM International Conference on
Automated Software Engineering (ASE ’18). Montpellier, France. https://doi.
org/10.1145/3238147.3238208

[25] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio, Andrea
Stocco, and Paolo Tonella. 2020. Taxonomy of Real Faults in Deep Learning
Systems. In Proceedings of the 42nd IEEE/ACM International Conference on
Software Engineering (ICSE ’20). Seoul, South Korea. https://doi.org/10.1145/
3377811.3380395

[26] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and Detecting Real-world Performance Bugs. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’ 12). Beijing, China. https://doi.org/10.1145/2254064.
2254075

[27] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. Biometrics (1977), 159–174.

[28] Amit Levy, Bradford Campbell, Branden Ghena, Daniel B. Giffin, Pat Pannuto,
Prabal Dutta, and Philip Levis. 2017. Multiprogramming a 64kB Computer
Safely and Efficiently. In Proceedings of the 26th ACM Symposium on Operating
Systems Principles (SOSP ’17). Shanghai, China. https://doi.org/10.1145/3132747.
3132786

[29] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. 2006. Have Things Changed Now? An Empirical Study of Bug Character-
istics in Modern Open Source Software. In Proceedings of the 1st Workshop on
Architectural and System Support for Improving Software Dependability (ASID
’06). San Jose, CA, USA. https://doi.org/10.1145/1181309.1181314

[30] Alexey Lozovsky. 2018. Rust vs C++ Comparison. https://www.apriorit.com/dev-
blog/520-rust-vs-c-comparison (Accessed on 09/01/2021).

[31] Nicholas D Matsakis and Felix S Klock. 2014. The Rust Language. In Proceedings
of the 2014 ACM SIGAda Annual Conference on High Integrity Language
Technology (HILT ’14). Portland, Oregon, USA. https://doi.org/10.1145/2663171.
2663188

[32] Laura G Militello and Robert JB Hutton. 1998. Applied cognitive task analy-
sis (ACTA): a practitioner’s toolkit for understanding cognitive task demands.
Ergonomics 41, 11 (1998). https://doi.org/10.1080/001401398186108

[33] David Mimno, Hanna M. Wallach, Edmund Talley, Miriam Leenders, and An-
drew McCallum. 2011. Optimizing Semantic Coherence in Topic Models. In
Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP ’11). Punta Cana, Dominican Republic. https://doi.org/
10.5555/2145432.2145462

[34] Mozilla. 2017. Quantum - MozillaWiki. https://wiki.mozilla.org/Quantum
(Accessed on 09/01/2021).

[35] Mozilla. 2020. Rust Compiler Error Index. https://doc.rust-lang.org/error-
index.html (Accessed on 09/01/2021).

[36] Mozilla. 2021. Rust Programming Language. https://www.rust-lang.org/ (Ac-
cessed on 09/01/2021).

[37] Nick Kolakowski. 2019. 10 Fastest-Growing Programming Languages on GitHub.
https://insights.dice.com/2019/11/11/10-github-programming-languages/. (Ac-
cessed on 09/01/2021).

[38] Marie-Hélène Nienaltowski, Michela Pedroni, and Bertrand Meyer. 2008. Com-
piler Error Messages: What Can Help Novices?. In Proceedings of the 39th
SIGCSE Technical Symposium on Computer Science Education (SIGCSE ’08).
Portland, OR, USA. https://doi.org/10.1145/1352135.1352192

[39] Daniela Seabra Oliveira, Tian Lin, Muhammad Sajidur Rahman, Rad Akefirad,
Donovan Ellis, Eliany Perez, Rahul Bobhate, Lois A. DeLong, Justin Cappos, and
Yuriy Brun. 2018. API Blindspots: Why Experienced Developers Write Vulnerable
Code. In Proceedings of the 14th Symposium on Usable Privacy and Security
(SOUPS ’18). Baltimore, MD, USA. https://doi.org/10.5555/3291228.3291253

[40] Alex Ozdemir. 2019. Unsafe in Rust: Syntactic Patterns. https://cs.stanford.edu/
~aozdemir/blog/unsafe-rust-syntax (Accessed on 09/01/2021).

[41] Parity Technologies. 2021. Parity Bitcoin Client. https://www.parity.io/bitcoin/
(Accessed on 09/01/2021).

[42] Parity Technologies. 2021. The Parity Ethereum Client. https://www.parity.io/
ethereum/ (Accessed on 09/01/2021).

[43] Boqin Qin, Yilun Chen, Zeming Yu, Linhai Song, and Yiying Zhang. 2020. Un-
derstanding Memory and Thread Safety Practices and Issues in Real-World
Rust Programs. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’20). London, UK.
https://doi.org/10.1145/3385412.3386036

[44] Qualtrics. 2021. Qualtrics XM // The Leading Experience Management Software.
https://www.qualtrics.com/ (Accessed on 09/01/2021).

https://doi.org/10.1145/3334480.3383069
https://doi.org/10.1145/3334480.3383069
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1109/ICSE.2019.00122
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3428204
https://doi.org/10.1145/3236024.3236040
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1109/ICSE.2017.59
https://doi.org/10.1145/3196321.3196333
https://doi.org/10.1145/3196321.3196333
https://doi.org/10.1136/bmj.310.6973.170
https://doi.org/10.1136/bmj.310.6973.170
https://doi.org/10.5555/944919.944937
https://doi.org/10.5555/944919.944937
https://blog.rust-lang.org/2021/05/11/edition-2021.html
https://blog.rust-lang.org/2021/05/11/edition-2021.html
https://doi.org/10.1016/j.jss.2011.09.003
https://doi.org/10.1006/ijhc.1994.1083
https://doi.org/10.1006/ijhc.1994.1083
https://arxiv.org/abs/2011.06171
https://doi.org/10.1145/3377811.3380404
https://doi.org/10.1145/3377811.3380404
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.1109/TSE.2003.1214329
https://doi.org/10.1145/3377811.3380413
https://doi.org/10.1145/3377811.3380413
https://github.com/rust-lang/rust/issues/67651
https://github.com/rust-lang/rust/issues/71584
https://github.com/rust-lang/rust/issues/71584
https://github.com/rust-lang/rust/issues/79429
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3106237.3106264
https://doi.org/10.1145/3238147.3238208
https://doi.org/10.1145/3238147.3238208
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/2254064.2254075
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/3132747.3132786
https://doi.org/10.1145/1181309.1181314
https://www.apriorit.com/dev-blog/520-rust-vs-c-comparison
https://www.apriorit.com/dev-blog/520-rust-vs-c-comparison
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1145/2663171.2663188
https://doi.org/10.1080/001401398186108
https://doi.org/10.5555/2145432.2145462
https://doi.org/10.5555/2145432.2145462
https://wiki.mozilla.org/Quantum
https://doc.rust-lang.org/error-index.html
https://doc.rust-lang.org/error-index.html
https://www.rust-lang.org/
https://insights.dice.com/2019/11/11/10-github-programming-languages/
https://doi.org/10.1145/1352135.1352192
https://doi.org/10.5555/3291228.3291253
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-syntax
https://cs.stanford.edu/~aozdemir/blog/unsafe-rust-syntax
https://www.parity.io/bitcoin/
https://www.parity.io/ethereum/
https://www.parity.io/ethereum/
https://doi.org/10.1145/3385412.3386036
https://www.qualtrics.com/

Learning and Programming Challenges of Rust: A Mixed-Methods Study ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

[45] Redox. 2020. Redox - Your Next(Gen) OS. https://www.redox-os.org/ (Accessed
on 09/01/2021).

[46] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Mod-
elling with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks. https://doi.org/10.13140/2.1.2393.1847

[47] Anastasia Reinhardt, Tianyi Zhang, Mihir Mathur, and Miryung Kim. 2018.
Augmenting Stack Overflow with API Usage Patterns Mined from GitHub. In
Proceedings of the 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE ’18). Lake Buena Vista, FL, USA. https://doi.org/10.1145/3236024.
3264585

[48] Rust. 2020. IntoIterator. https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-
IntoIterator-1 (Accessed on 09/01/2021).

[49] Rust. 2020. split_first_mut. https://doc.rust-lang.org/std/primitive.slice.html#
method.split_first_mut (Accessed on 09/01/2021).

[50] Rust. 2020. Understanding Ownership. https://doc.rust-lang.org/book/ch04-00-
understanding-ownership.html

[51] Rust Forum. 2017. Quick introduction to Rust for C++ programmers. https://users.
rust-lang.org/t/quick-introduction-to-rust-for-c-programmers/13769 (Accessed
on 09/01/2021).

[52] Rust Survey Team. 2019. Rust Survey 2019 Results. https://blog.rust-lang.org/
2020/04/17/Rust-survey-2019.html (Accessed on 09/01/2021).

[53] Rust Survey Team. 2020. Rust Survey 2020 Results. https://blog.rust-lang.org/
2020/12/16/rust-survey-2020.html (Accessed on 09/01/2021).

[54] Servo. 2020. Servo. https://servo.org/ (Accessed on 09/01/2021).
[55] Stack Overflow. 2016. Stack Overflow Developer Survey 2016.

https://insights.stackoverflow.com/survey/2016#technology-most-loved-
dreaded-and-wanted (Accessed on 09/01/2021).

[56] Stack Overflow. 2017. Stack Overflow Developer Survey 2017. https://insights.
stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted (Accessed on
09/01/2021).

[57] Stack Overflow. 2018. Stack Overflow Developer Survey 2018. https://insights.
stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted (Accessed on
09/01/2021).

[58] Stack Overflow. 2019. Stack Overflow Developer Survey 2019. https://insights.
stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted (Accessed on
09/01/2021).

[59] Stack Overflow. 2020. Stack Overflow Developer Survey 2020. https://insights.
stackoverflow.com/survey/2020#most-loved-dreaded-and-wanted (Accessed on
09/01/2021).

[60] Stack Overflow. 2021. Stack Overflow - Where Developers Learn, Share, & Build
Careers. https://stackoverflow.com/ (Accessed on 09/01/2021).

[61] Stack Overflow. 2021. Stack Overflow Developer Survey 2021.
https://insights.stackoverflow.com/survey/2021#section-most-loved-dreaded-
and-wanted-programming-scripting-and-markup-languages (Accessed on
09/01/2021).

[62] Stack Overflow 62491845. 2020. Ownership: differences between tuples and arrays
in Rust. https://stackoverflow.com/questions/62491845/ownership-differences-
between-tuples-and-arrays-in-rust (Accessed on 09/01/2021).

[63] Stack Overflow 65682678. 2021. Rust Closures concept. https://stackoverflow.
com/questions/65682678/rust-closures-concept (Accessed on 09/01/2021).

[64] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. ACM Transactions on Computing Education
13, 4 (2013). https://doi.org/10.1145/2534973

[65] Mingshen Sun, Yulong Zhang, and TaoWei. 2018. WhenMemory-Safe Languages
Become Unsafe. In DEF CON China (DEF CON China ’18). Beijing, China.

[66] Mohammad Tahaei, Kami Vaniea, and Naomi Saphra. 2020. Understanding
Privacy-Related Questions on Stack Overflow. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (CHI ’20). Honolulu, HI,
USA. https://doi.org/10.1145/3313831.3376768

[67] The Rust Core Team. 2021. Planning the 2021 Roadmap | Rust Blog. https:
//blog.rust-lang.org/2020/09/03/Planning-2021-Roadmap.html (Accessed on
09/01/2021).

[68] Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. 2019. Under-
standing Real-World Concurrency Bugs in Go. In Proceedings of the 24th
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’19). Providence, RI, USA. https://doi.org/10.
1145/3297858.3304069

[69] Jinfeng Wen, Zhenpeng Chen, Yi Liu, Yiling Lou, Yun Ma, Gang Huang, Xin
Jin, and Xuanzhe Liu. 2021. An empirical study on challenges of application
development in serverless computing. In Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ’21). Virtual Event, USA. https:
//doi.org/10.1145/3468264.3468558

[70] Bowen Xu, Zhenchang Xing, Xin Xia, and David Lo. 2017. AnswerBot: Au-
tomated Generation of Answer Summary to Developers’ Technical Questions.
In Proceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE ’17). Urbana-Champaign, IL, USA. https://doi.org/
10.5555/3155562.3155650

[71] Hui Xu, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou, and Michael Lyu. 2020.
Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust
CVEs. ACM Trans. Softw. Eng. Methodol. 31, 1 (2020). https://doi.org/10.1145/
3466642

[72] Xin-Li Yang, David Lo, Xin Xia, Zhiyuan Wan, and Jian-Ling Sun. 2016. What
Security Questions Do Developers Ask? A Large-Scale Study of Stack Overflow
Posts. Journal of Computer Science and Technology 31 (09 2016), 910–924. https:
//doi.org/10.1007/s11390-016-1672-0

[73] Anna Zeng and Will Crichton. 2018. Identifying Barriers to Adoption for Rust
through Online Discourse. In PLATEAU@SPLASH ’18. Boston, MA. https:
//doi.org/10.4230/OASIcs.PLATEAU.2018.5

[74] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An Empirical Study on TensorFlow Program Bugs. In Proceedings of the
27th International Symposium on Software Testing and Analysis (ISSTA ’18).
Amsterdam, Netherlands. https://doi.org/10.1145/3213846.3213866

[75] Jing Zhou and Robert J. Walker. 2016. API Deprecation: A Retrospective Analysis
and Detection Method for Code Examples on the Web. In Proceedings of the
24th International Symposium on Foundations of Software Engineering (FSE
’16). Seattle, WA, USA. https://doi.org/10.1145/2950290.2950298

https://www.redox-os.org/
https://doi.org/10.13140/2.1.2393.1847
https://doi.org/10.1145/3236024.3264585
https://doi.org/10.1145/3236024.3264585
https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-IntoIterator-1
https://doc.rust-lang.org/std/vec/struct.Vec.html#impl-IntoIterator-1
https://doc.rust-lang.org/std/primitive.slice.html#method.split_first_mut
https://doc.rust-lang.org/std/primitive.slice.html#method.split_first_mut
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://doc.rust-lang.org/book/ch04-00-understanding-ownership.html
https://users.rust-lang.org/t/quick-introduction-to-rust-for-c-programmers/13769
https://users.rust-lang.org/t/quick-introduction-to-rust-for-c-programmers/13769
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html
https://blog.rust-lang.org/2020/04/17/Rust-survey-2019.html
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://blog.rust-lang.org/2020/12/16/rust-survey-2020.html
https://servo.org/
https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2016#technology-most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2017#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2018/#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2019#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2020#most-loved-dreaded-and-wanted
https://insights.stackoverflow.com/survey/2020#most-loved-dreaded-and-wanted
https://stackoverflow.com/
https://insights.stackoverflow.com/survey/2021#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://insights.stackoverflow.com/survey/2021#section-most-loved-dreaded-and-wanted-programming-scripting-and-markup-languages
https://stackoverflow.com/questions/62491845/ownership-differences-between-tuples-and-arrays-in-rust
https://stackoverflow.com/questions/62491845/ownership-differences-between-tuples-and-arrays-in-rust
https://stackoverflow.com/questions/65682678/rust-closures-concept
https://stackoverflow.com/questions/65682678/rust-closures-concept
https://doi.org/10.1145/2534973
https://doi.org/10.1145/3313831.3376768
https://blog.rust-lang.org/2020/09/03/Planning-2021-Roadmap.html
https://blog.rust-lang.org/2020/09/03/Planning-2021-Roadmap.html
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.1145/3468264.3468558
https://doi.org/10.5555/3155562.3155650
https://doi.org/10.5555/3155562.3155650
https://doi.org/10.1145/3466642
https://doi.org/10.1145/3466642
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.1007/s11390-016-1672-0
https://doi.org/10.4230/OASIcs.PLATEAU.2018.5
https://doi.org/10.4230/OASIcs.PLATEAU.2018.5
https://doi.org/10.1145/3213846.3213866
https://doi.org/10.1145/2950290.2950298

	Abstract
	1 Introduction
	2 Background
	2.1 Rust's Safety Mechanism
	2.2 Rust's Compiler Error Messages

	3 Studying Stack Overflow Questions
	3.1 Methodology
	3.2 Which Safety Rules Are Difficult?
	3.3 When Is a Safety Rule More Confusing?
	3.4 Evaluating Compiler Error Messages

	4 Surveying Rust Programmers
	4.1 Methodology
	4.2 Survey Results

	5 Discussion
	6 Related Work
	7 Conclusion
	References

